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Abstract 

Efficient and accurate primality testing is a key mechanism used to ensure digital 

security in the modern world. Ensuring accurate primality is critical for guaranteed 

accurate message encryption and decryption, accurate identity verification, as well as a 

secure cryptosystem, whose security is guaranteed by the discrete logarithm problem. 

There are two types of algorithms that determine whether an integer is prime or 

composite, known commonly as primality tests. The two types are, probabilistic which in 

general are faster but less accurate, and deterministic tests which are slower but 

guaranty accuracy.  

The purpose of this project is to create a primality test that is based upon the 

asymmetric cryptosystem RSA. The RSA Based Primality Test works by using the first 

N primes respectively as both a prime factor of the modulus and encryption exponent. 

The integer being tested for primality is the other assumed prime factor of the modulus. 

A random message, M, that is less than N, is then encrypted and decrypted using the 

constructed cryptosystem. If that M is equal to original M, the test increments one on the 

count of true instances, otherwise it increments one on the count of false instances.  

It was found that count of false instances for 2 factor RSA was the most efficient 

form of this test - for x supplied known primes between 2 and N, and y being the first 

odd counterexample, the line y = 3.3*x^2.7 describes the RSA Based Primality Tests 

properties with a correlation coefficient, r, of 0.97. 

 

 



Purpose 

The purpose of this project is to create a primality test algorithm which is based 

on the RSA cryptosystem. The advantage of this type of test, be it probabilistic or 

deterministic, is that it relies on proven hypothesis and concepts, and would not function 

the same, i.e. have the same flaws, as other types of probabilistic primality tests. 

Additionally, so far this exact type of test has not been implemented in this manner.  

 

Introduction 

The accurate and efficient primality testing is critical for constructing asymmetric 

cryptosystems. Accuracy of primality testing is important because encryption and 

decryption of every message less than N must be accurate. In addition to inaccurate 

encryption, inaccurate primality testing can result in cryptographically insecure keys. 

Efficiency of primality testing is important because cryptosystem construction must not 

take an intractable amount of computation time. Digital signatures, secure message 

transmission, and identity verification are all incredibly useful applications of asymmetric 

cryptography, as well as being a vital part of modern digital industry on the internet. 

Examples of asymmetric cryptosystems (aka Public-Key cryptography) or key 

exchanges include RSA, Diffie-Hellman key exchange, ElGamal encryption, Paillier 

cryptosystem, and the Elliptic Curve cryptographic versions of all of these. In 

summation, efficient and accurate primality testing is critical for modern digital security.  

The RSA cryptosystem on works using two key pairs; (e, N) and (d, N). The two 

key pairs are inverse permutations of each other via the simple function of raising the 



message to encryption or decryption exponent (e or d) remainder division the modulus, 

N. As long as d is kept private, RSA can be used as identity verification as well as a 

secure cryptosystem. The operation of raising a number, M, to the power of e modulo 

(remainder division) N can be speed up on computers using a technique known as 

modular exponentiation. The modulus N is constructed from two or more known prime 

factors, and thus the Euler Totient function, denoted as φ(N), or the count of integers 

less than N which or coprime to N, can be constructed from the known prime 

factorization of the modulus, N. Figure 1 shows Euler's Totient function for all positive 

integers less than 10000. The public (encryption) exponent, designated as e, must be 

coprime to N and φ(N). The decryption exponent, d, must satisfy the equation 1=d*e 

modulo φ(N), and can be computed efficiently using the Extended Euclidean Algorithm.  

Probabilistic primality tests do not guarantee a certificate of primality. Most 

probabilistic tests can determine if a number is definitively composite, but sometimes 

will output a false positive for primality. Other probabilistic primality tests simply use 

mechanisms which have not been fully proven to guarantee primality. Deterministic 

primality tests give a definitive output of either primality or compositeness.  

 

 

 

 

 

 



Figure 1 

 

 
 

Experiment/Model 

The RSA Based Primality Test works by using the first N primes respectively as 

both a prime factor of the modulus and encryption exponent. The integer being tested 

for primality is the other assumed prime factor of the modulus. A random message, that 

is less than N, is then encrypted and decrypted using the constructed cryptosystem. If 

that M is equal to original M, the test increments one on the count of true instances, 

otherwise it increments one on the count of false instances. It should be noted that 

earlier and less reliable versions of the RSA Based Primality Test, such as the several 

possible multiprime implementations, are not included in this final version. There are 18 

earlier versions versions which include some of these many elements that were found to 



be not as useful. Figure 2 below is the final version of the RSA Based Primality Test 

coded in Python3.  

Figure 2 

import random 
import time 
from fractions import gcd 
#The Miller Rabin primality test is used to find the known primes for the RSABPT 
def miller_rabin(n): 
          k = 10 
          if n == 2: 
                    return True 
          if n % 2 == 0: 
                    return False 
          r, s = 0, n - 1 
          while s % 2 == 0: 
                    r += 1 
                    s //= 2 
          for _ in range(k): 
                    a = random.randint(2, n - 1) 
                    x = pow(a, s, n) 
                    if x == 1 or x == n - 1: 
                              continue 
                    for _ in range(r - 1): 
                              x = pow(x, 2, n) 
                              if x == n - 1: 
                                        break 
                    else: 
                              return False 
          return True 
def egcd(a,b): 
          u, u1 = 1, 0 
          v, v1 = 0, 1 
          while b: 
                    q = a // b 
                    u, u1 = u1, u - q * u1 
                    v, v1 = v1, v - q * v1 
                    a, b = b, a - q * b 



          return u 
def mod_inverse(e,phi): 
          return egcd(e,phi)%phi 
def coprime_message(n): 
          c = 1 
          while c < n-1: 
                    c += 1 
                    m = random.randint(2, n-1) 
                    if gcd(m, n) == 1: 
                              return m 
def primegen(n): 
    c = 0 
    int = 1 
    out = [] 
    while c < n: 
        int += 1 
        if miller_rabin(int) == True: 
            c += 1 
            out.append(int) 
    return out 
def rsabpt(q, max): 
#RSA Based Primality Test Function 
#q is the given integer being tested for primality 
#max is the number of known primes used in the function 
    true_primes = primegen(max) 
    for prime in true_primes: 
        for e in true_primes: 
          n = q*prime 
          phi = (q-1)*(prime-1) 
          d = mod_inverse(e, phi) 
          if e < phi: 
            if gcd(e, n) == 1: 
              if gcd(e, phi) == 1: 
                if gcd(d, n) == 1: 
                  if gcd(d, phi) == 1: 
                      if gcd(n, phi) == 1: 
                            m = coprime_message(n) 
                            c = pow(m, e, n) 
                            m1 = pow(c, d, n) 



                            if m1 != m: 
                              return False 
    return True 
start = time.clock() 
p, t = rsabpt(65537, 20), time.clock() - start 
print(p, t) 
#Test example, 65537 is a fermat prime 
#Also showing the time.clock() function for determining CPU seconds used 
 

Results 

The analysis of the functionality and capabilities of the RSA Based Primality test 

involved massive quantities of data analysis, therefore much of the benchmark results 

obtained are best illustrated in the form of graphs. All graphs were constructed using the 

Python library matplotlib. All CPU computation time benchmark tests were done on a 

Intel® Core™2 Duo CPU E4600 @ 2.40GHz × 2, and the operating system used was 

Kali Linux. All of the computations done for this project were completed across Windows 

10, Kali Linux, and Ubuntu Linux machines, as well as online IDE’s which ran the code 

on remote Linux machines. A total of 6 different computers were involved in gathering 

these results, including one which handled online IDE computations.  

Figures 3, 4, 5, and 6 show some results of the 4 different possible conditions 

under which the RSA Based Primality Test could operate. The two defining aspects are 

2 factor, or 3 factor, and whether the test outputs a count of true instances or a count of 

False instances. Figure 3 is the most promising form of the test, which is a 2 factor 

count of false instances test.  

 

 



 

 

 

 

Figure 3 

 

RSA Based Primality Test Minimums and Maximums for 2 Factor Count of False 
Instances 

(max(false_prime), min(false_prime)) = (0, 0) 
(max(false_odd), min(false_odd)) = (1683, 47) 
(max(false_even), min(false_even)) = (32, 0) 

 

 

 

 

 

 



 

 

 

 

Figure 4 

 

 
RSA Based Primality Test Minimums and Maximums for 2 Factor Count of True 

Instances 
(max(true_prime), min(true_prime)) = (1790, 1502) 

(max(true_odd), min(true_odd)) = (1412, 0) 
(max(true_even), min(true_even)) = (23, 0) 

 
 
 
 
 
 
 
 



 
 
 
 

 
 

Figure 5 

 

RSA Based Primality Test Minimums and Maximums for 3 Factor Count of False 
Instances 

(max(false_prime), min(false_prime)) = (1748, 1489) 
(max(false_odd), min(false_odd)) = (67465, 1299) 

(max(false_even), min(false_even)) = (32, 0) 
 

 

 

 

 

 



Figure 6 

 

RSA Based Primality Test Minimums and Maximums for 3 Factor Count of True 
Instances 

(max(true_prime), min(true_prime)) = (70483, 56913) 
(max(true_odd), min(true_odd)) = (51426, 2) 
(max(true_even), min(true_even)) = (24, 0) 

 

 

Figure 7 below shows the percentage of incorrect instances for integers less than 

10000 given an increasing number of known prime integers supplied to the RSA Based 

Primality Test, using count of false instances, 2 factor.  An important note on the figure 

itself for clarity is that when x = 9, y = 0. 

Meanwhile, Figure 8 shows percentage of incorrect instances for all positive 

integers. Again, this test was only done for the 2 factor, false count version of the RSA 

Based Primality Test.  

 



Figure 7 

 

 

 

 

Figure 8 

 



Figure 9 shows the curve that describes where the first counterexamples occur 

for each increment of known prime integers supplied to the RSA Based Primality Test 2 

factor false count version, for both even and odd integers.  

 

Figure 9 

 

 

 

 

 

 

 

 



Figures 10, 11, and 12, are CPU computation time benchmark tests for a variety 

of differing bitlength prime integers.  

Figure 10 

 

 

Figure 11 

 



 

Figure 12 

 

 

 

Analysis 

Of the 4 types of the RSA Based Primality test, true and false count for 3 factor 

RSA (Figures 5 and 6), as well as true count of 2 factor (Figure 4) did not show clear 

differentiation of the bounds (minimums and maximums of the tested data set) for all 

numbers extending past the tested integer range, which in this case was 200-10000. 

However, the RSA Based Primality test for 2 factor false count (Figure 3) showed a 

clear differentiation between composite and prime integers (in this case using the 

known prime integer set between 2 and 199), making it a highly likely candidate for a 

primality test. It should be noted that the actual x value for these 4 tests is 46 - i.e. there 



are 46 prime integers inclusively between 2 and 199.  

The CPU computation time testing for primality was graphed for 3 different 

bitlength primes. The line of best fit and correlation coefficients for all datasets were 

very similar in their power lines of best fit, with consistently high correlation coefficients. 

The number of iterations for the RSA Based Primality Test, also referred to as the 

number of known prime integers supplied to the test, is limited for primality testing of a 

given integer N by the count of of prime integers that exist between 2 and N-1.  

The first counterexample for false positives is described by the line y = 3.3*x^2.7 

with a correlation coefficient of 0.97 for odd integers. The line y = 1.3*x^1.4 describes 

the same conditions described above for even integers with a correlation coefficient of 

0.97.  

The percentage of false positives from the RSA Based Primality Test decrease 

dramatically for increased number of known prime integers supplied to the RSA Based 

Primality Test. However, for larger bitlength prime integers (Bitlength(N) > 1024), the 

computation time increases as well, making the RSA Based Primality test usable as 

both a probabilistic and deterministic primality test depending on how much computation 

time is available. It should be noted that integers within the range of known primes used 

in the RSA Based Primality Test for the percentage of false positives graph were not 

tested, at least for Figure 7.  

What is significant about figure 8 is that it shows that the test can be used as a 

low accuracy probabilistic primality test within the range of used primes, and therefore it 

seems infeasible to use the number of repetitions required to make the test definitive 



within that integer range. Additionally, since the test is designed to use only the first N 

primes, using the RSA Based Primality test in this manner is simply useless - only large 

bitlength (Bitlength(N) > 1024) prime integers are useful for public key cryptography. An 

interesting aspect of this particular graph is that it showed that within the pool of used 

primes, a 2 factor false count RSA Based Primality Test outputs largely false positives, 

but also occasionally false negatives, which is not the case for integers outside of that 

set of known primes used in the test itself.  

Based on previous RSA Based Primality Test versions and tests, it is possible to 

use differing pool of primes, besides just the primes that exist between 2 and N. 

However, this technique is not as efficient, nor does it have the same properties as the 

tested version used in all of the benchmark tests.  

 

Conclusion 

This implementation of a primality test based on the RSA cryptosystem is unique. 

The versatility of the RSA Based Primality test as being both probabilistic and 

deterministic based upon the input of known primes used in the code. The accurate 

primality testing of large integers is critical for accurate encryption and subsequent 

decryption, as well as secure asymmetric cryptosystems, whose applications include 

identity verification, and secure message transmission.  Two factor RSA Based 

Primality Test with count of false instances is the most accurate form of the RSA Based 

Primality test, although the other forms (multiprime RSA and count of true instances) 

can be used as well, although with a lesser degree of accuracy. 



Future experimentation for this project will include coding the RSA Based 

Primality Test in C++, specifically Nvidia’s CUDA, which runs the code on GPUs rather 

than CPUs, and is consequently much faster. Then additional benchmark computation 

time tests with large bitlength primes will need to be conducted with this updated 

version of the code, given that computation time is the only factor that would be affected 

by coding the test in CUDA.  
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