
RSA Based Primality Test

New Mexico

Supercomputing Challenge

Final Report

April 4th, 2018

LAHS71

Los Alamos High School

Student:

Elijah Pelofske

Teacher:

Alan Didier

Abstract

Efficient and accurate primality testing is a key mechanism used to ensure digital

security in the modern world. Ensuring accurate primality is critical for guaranteed

accurate message encryption and decryption, accurate identity verification, as well as a

secure cryptosystem, whose security is guaranteed by the discrete logarithm problem.

There are two types of algorithms that determine whether an integer is prime or

composite, known commonly as primality tests. The two types are, probabilistic which in

general are faster but less accurate, and deterministic tests which are slower but

guaranty accuracy.

The purpose of this project is to create a primality test that is based upon the

asymmetric cryptosystem RSA. The RSA Based Primality Test works by using the first

N primes respectively as both a prime factor of the modulus and encryption exponent.

The integer being tested for primality is the other assumed prime factor of the modulus.

A random message, M, that is less than N, is then encrypted and decrypted using the

constructed cryptosystem. If that M is equal to original M, the test increments one on the

count of true instances, otherwise it increments one on the count of false instances.

It was found that count of false instances for 2 factor RSA was the most efficient

form of this test - for x supplied known primes between 2 and N, and y being the first

odd counterexample, the line y = 3.3*x^2.7 describes the RSA Based Primality Tests

properties with a correlation coefficient, r, of 0.97.

Purpose

The purpose of this project is to create a primality test algorithm which is based

on the RSA cryptosystem. The advantage of this type of test, be it probabilistic or

deterministic, is that it relies on proven hypothesis and concepts, and would not function

the same, i.e. have the same flaws, as other types of probabilistic primality tests.

Additionally, so far this exact type of test has not been implemented in this manner.

Introduction

The accurate and efficient primality testing is critical for constructing asymmetric

cryptosystems. Accuracy of primality testing is important because encryption and

decryption of every message less than N must be accurate. In addition to inaccurate

encryption, inaccurate primality testing can result in cryptographically insecure keys.

Efficiency of primality testing is important because cryptosystem construction must not

take an intractable amount of computation time. Digital signatures, secure message

transmission, and identity verification are all incredibly useful applications of asymmetric

cryptography, as well as being a vital part of modern digital industry on the internet.

Examples of asymmetric cryptosystems (aka Public-Key cryptography) or key

exchanges include RSA, Diffie-Hellman key exchange, ElGamal encryption, Paillier

cryptosystem, and the Elliptic Curve cryptographic versions of all of these. In

summation, efficient and accurate primality testing is critical for modern digital security.

The RSA cryptosystem on works using two key pairs; (e, N) and (d, N). The two

key pairs are inverse permutations of each other via the simple function of raising the

message to encryption or decryption exponent (e or d) remainder division the modulus,

N. As long as d is kept private, RSA can be used as identity verification as well as a

secure cryptosystem. The operation of raising a number, M, to the power of e modulo

(remainder division) N can be speed up on computers using a technique known as

modular exponentiation. The modulus N is constructed from two or more known prime

factors, and thus the Euler Totient function, denoted as φ(N), or the count of integers

less than N which or coprime to N, can be constructed from the known prime

factorization of the modulus, N. Figure 1 shows Euler's Totient function for all positive

integers less than 10000. The public (encryption) exponent, designated as e, must be

coprime to N and φ(N). The decryption exponent, d, must satisfy the equation 1=d*e

modulo φ(N), and can be computed efficiently using the Extended Euclidean Algorithm.

Probabilistic primality tests do not guarantee a certificate of primality. Most

probabilistic tests can determine if a number is definitively composite, but sometimes

will output a false positive for primality. Other probabilistic primality tests simply use

mechanisms which have not been fully proven to guarantee primality. Deterministic

primality tests give a definitive output of either primality or compositeness.

Figure 1

Experiment/Model

The RSA Based Primality Test works by using the first N primes respectively as

both a prime factor of the modulus and encryption exponent. The integer being tested

for primality is the other assumed prime factor of the modulus. A random message, that

is less than N, is then encrypted and decrypted using the constructed cryptosystem. If

that M is equal to original M, the test increments one on the count of true instances,

otherwise it increments one on the count of false instances. It should be noted that

earlier and less reliable versions of the RSA Based Primality Test, such as the several

possible multiprime implementations, are not included in this final version. There are 18

earlier versions versions which include some of these many elements that were found to

be not as useful. Figure 2 below is the final version of the RSA Based Primality Test

coded in Python3.

Figure 2

import random
import time
from fractions import gcd
#The Miller Rabin primality test is used to find the known primes for the RSABPT
def miller_rabin(n):
 k = 10
 if n == 2:
 return True
 if n % 2 == 0:
 return False
 r, s = 0, n - 1
 while s % 2 == 0:
 r += 1
 s //= 2
 for _ in range(k):
 a = random.randint(2, n - 1)
 x = pow(a, s, n)
 if x == 1 or x == n - 1:
 continue
 for _ in range(r - 1):
 x = pow(x, 2, n)
 if x == n - 1:
 break
 else:
 return False
 return True
def egcd(a,b):
 u, u1 = 1, 0
 v, v1 = 0, 1
 while b:
 q = a // b
 u, u1 = u1, u - q * u1
 v, v1 = v1, v - q * v1
 a, b = b, a - q * b

 return u
def mod_inverse(e,phi):
 return egcd(e,phi)%phi
def coprime_message(n):
 c = 1
 while c < n-1:
 c += 1
 m = random.randint(2, n-1)
 if gcd(m, n) == 1:
 return m
def primegen(n):
 c = 0
 int = 1
 out = []
 while c < n:
 int += 1
 if miller_rabin(int) == True:
 c += 1
 out.append(int)
 return out
def rsabpt(q, max):
#RSA Based Primality Test Function
#q is the given integer being tested for primality
#max is the number of known primes used in the function
 true_primes = primegen(max)
 for prime in true_primes:
 for e in true_primes:
 n = q*prime
 phi = (q-1)*(prime-1)
 d = mod_inverse(e, phi)
 if e < phi:
 if gcd(e, n) == 1:
 if gcd(e, phi) == 1:
 if gcd(d, n) == 1:
 if gcd(d, phi) == 1:
 if gcd(n, phi) == 1:
 m = coprime_message(n)
 c = pow(m, e, n)
 m1 = pow(c, d, n)

 if m1 != m:
 return False
 return True
start = time.clock()
p, t = rsabpt(65537, 20), time.clock() - start
print(p, t)
#Test example, 65537 is a fermat prime
#Also showing the time.clock() function for determining CPU seconds used

Results

The analysis of the functionality and capabilities of the RSA Based Primality test

involved massive quantities of data analysis, therefore much of the benchmark results

obtained are best illustrated in the form of graphs. All graphs were constructed using the

Python library matplotlib. All CPU computation time benchmark tests were done on a

Intel® Core™2 Duo CPU E4600 @ 2.40GHz × 2, and the operating system used was

Kali Linux. All of the computations done for this project were completed across Windows

10, Kali Linux, and Ubuntu Linux machines, as well as online IDE’s which ran the code

on remote Linux machines. A total of 6 different computers were involved in gathering

these results, including one which handled online IDE computations.

Figures 3, 4, 5, and 6 show some results of the 4 different possible conditions

under which the RSA Based Primality Test could operate. The two defining aspects are

2 factor, or 3 factor, and whether the test outputs a count of true instances or a count of

False instances. Figure 3 is the most promising form of the test, which is a 2 factor

count of false instances test.

Figure 3

RSA Based Primality Test Minimums and Maximums for 2 Factor Count of False
Instances

(max(false_prime), min(false_prime)) = (0, 0)
(max(false_odd), min(false_odd)) = (1683, 47)
(max(false_even), min(false_even)) = (32, 0)

Figure 4

RSA Based Primality Test Minimums and Maximums for 2 Factor Count of True

Instances
(max(true_prime), min(true_prime)) = (1790, 1502)

(max(true_odd), min(true_odd)) = (1412, 0)
(max(true_even), min(true_even)) = (23, 0)

Figure 5

RSA Based Primality Test Minimums and Maximums for 3 Factor Count of False
Instances

(max(false_prime), min(false_prime)) = (1748, 1489)
(max(false_odd), min(false_odd)) = (67465, 1299)

(max(false_even), min(false_even)) = (32, 0)

Figure 6

RSA Based Primality Test Minimums and Maximums for 3 Factor Count of True
Instances

(max(true_prime), min(true_prime)) = (70483, 56913)
(max(true_odd), min(true_odd)) = (51426, 2)
(max(true_even), min(true_even)) = (24, 0)

Figure 7 below shows the percentage of incorrect instances for integers less than

10000 given an increasing number of known prime integers supplied to the RSA Based

Primality Test, using count of false instances, 2 factor. An important note on the figure

itself for clarity is that when x = 9, y = 0.

Meanwhile, Figure 8 shows percentage of incorrect instances for all positive

integers. Again, this test was only done for the 2 factor, false count version of the RSA

Based Primality Test.

Figure 7

Figure 8

Figure 9 shows the curve that describes where the first counterexamples occur

for each increment of known prime integers supplied to the RSA Based Primality Test 2

factor false count version, for both even and odd integers.

Figure 9

Figures 10, 11, and 12, are CPU computation time benchmark tests for a variety

of differing bitlength prime integers.

Figure 10

Figure 11

Figure 12

Analysis

Of the 4 types of the RSA Based Primality test, true and false count for 3 factor

RSA (Figures 5 and 6), as well as true count of 2 factor (Figure 4) did not show clear

differentiation of the bounds (minimums and maximums of the tested data set) for all

numbers extending past the tested integer range, which in this case was 200-10000.

However, the RSA Based Primality test for 2 factor false count (Figure 3) showed a

clear differentiation between composite and prime integers (in this case using the

known prime integer set between 2 and 199), making it a highly likely candidate for a

primality test. It should be noted that the actual x value for these 4 tests is 46 - i.e. there

are 46 prime integers inclusively between 2 and 199.

The CPU computation time testing for primality was graphed for 3 different

bitlength primes. The line of best fit and correlation coefficients for all datasets were

very similar in their power lines of best fit, with consistently high correlation coefficients.

The number of iterations for the RSA Based Primality Test, also referred to as the

number of known prime integers supplied to the test, is limited for primality testing of a

given integer N by the count of of prime integers that exist between 2 and N-1.

The first counterexample for false positives is described by the line y = 3.3*x^2.7

with a correlation coefficient of 0.97 for odd integers. The line y = 1.3*x^1.4 describes

the same conditions described above for even integers with a correlation coefficient of

0.97.

The percentage of false positives from the RSA Based Primality Test decrease

dramatically for increased number of known prime integers supplied to the RSA Based

Primality Test. However, for larger bitlength prime integers (Bitlength(N) > 1024), the

computation time increases as well, making the RSA Based Primality test usable as

both a probabilistic and deterministic primality test depending on how much computation

time is available. It should be noted that integers within the range of known primes used

in the RSA Based Primality Test for the percentage of false positives graph were not

tested, at least for Figure 7.

What is significant about figure 8 is that it shows that the test can be used as a

low accuracy probabilistic primality test within the range of used primes, and therefore it

seems infeasible to use the number of repetitions required to make the test definitive

within that integer range. Additionally, since the test is designed to use only the first N

primes, using the RSA Based Primality test in this manner is simply useless - only large

bitlength (Bitlength(N) > 1024) prime integers are useful for public key cryptography. An

interesting aspect of this particular graph is that it showed that within the pool of used

primes, a 2 factor false count RSA Based Primality Test outputs largely false positives,

but also occasionally false negatives, which is not the case for integers outside of that

set of known primes used in the test itself.

Based on previous RSA Based Primality Test versions and tests, it is possible to

use differing pool of primes, besides just the primes that exist between 2 and N.

However, this technique is not as efficient, nor does it have the same properties as the

tested version used in all of the benchmark tests.

Conclusion

This implementation of a primality test based on the RSA cryptosystem is unique.

The versatility of the RSA Based Primality test as being both probabilistic and

deterministic based upon the input of known primes used in the code. The accurate

primality testing of large integers is critical for accurate encryption and subsequent

decryption, as well as secure asymmetric cryptosystems, whose applications include

identity verification, and secure message transmission. Two factor RSA Based

Primality Test with count of false instances is the most accurate form of the RSA Based

Primality test, although the other forms (multiprime RSA and count of true instances)

can be used as well, although with a lesser degree of accuracy.

Future experimentation for this project will include coding the RSA Based

Primality Test in C++, specifically Nvidia’s CUDA, which runs the code on GPUs rather

than CPUs, and is consequently much faster. Then additional benchmark computation

time tests with large bitlength primes will need to be conducted with this updated

version of the code, given that computation time is the only factor that would be affected

by coding the test in CUDA.

References

[1] A Method for Obtaining Digital Signatures and Public-Key Cryptosystems.

https://people.csail.mit.edu/rivest/Rsapaper.pdf

[2] An Introduction to the Theory of Numbers.

http://www.fuchs-braun.com/media/532896481f9c1c47ffff8077fffffff0.pdf

[3] Asymmetric cryptography and practical security. David Pointcheval.

https://pdfs.semanticscholar.org/f086/fc07648dd8277b0e14702718d3a86c8dc106.pd

f

[4] Diffie-Hellman: Key Exchange and Public Key Cryptosystems. ​Sivanagaswathi

Kallam. ​cs.indstate.edu/~skallam/doc.pdf

[5] Eulers Theorem. ​http://sites.millersville.edu/bikenaga/number-theory/euler/euler.pdf

[6] Great Internet Mersenne Prime Search. ​https://www.mersenne.org/

[7] “Primality Test”. Wolfram Research inc.

http://mathworld.wolfram.com/PrimalityTest.html

[8] Primality Randomization. ​Shubham Sahai Srivastava.

https://people.csail.mit.edu/rivest/Rsapaper.pdf
http://www.fuchs-braun.com/media/532896481f9c1c47ffff8077fffffff0.pdf
http://sites.millersville.edu/bikenaga/number-theory/euler/euler.pdf
https://www.mersenne.org/
http://mathworld.wolfram.com/PrimalityTest.html

https://www.cse.iitk.ac.in/users/ssahai/talks/primality_randomization.pdf

[9] Primes in P. ​https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

[10] Python Implementation of Miller Rabin Primality Test.

https://gist.github.com/Ayrx/5884790

[11] Python Implementation of Modular Inverse for RSA.

https://gist.github.com/ofaurax/6103869014c246f962ab30a513fb5b49

[12] RSA Attacks. Al Rasheed, Abdul Aziz and Fatim.

https://www.utc.edu/center-information-security-assurance/pdfs/course-paper-5600-rsa.

pdf

[13] The Miller-Rabin Randomized Primality Test.

http://www.cs.cornell.edu/courses/cs4820/2010sp/handouts/MillerRabin.pdf

[14] The Miller–Rabin Test.

http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/millerrabin.pdf

[15] The Rabin-Miller Primality Test.

http://home.sandiego.edu/~dhoffoss/teaching/cryptography/10-Rabin-Miller.pdf

Acknowledgements

I would like to thank Alan Didier and the Los Alamos High School Computer

Science Club for their help with computing power. I would also like to thank the

wonderful online IDE, repl.it.

https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf
https://gist.github.com/Ayrx/5884790
https://gist.github.com/ofaurax/6103869014c246f962ab30a513fb5b49
https://www.utc.edu/center-information-security-assurance/pdfs/course-paper-5600-rsa.pdf
https://www.utc.edu/center-information-security-assurance/pdfs/course-paper-5600-rsa.pdf
http://www.cs.cornell.edu/courses/cs4820/2010sp/handouts/MillerRabin.pdf
http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/millerrabin.pdf
http://home.sandiego.edu/~dhoffoss/teaching/cryptography/10-Rabin-Miller.pdf

